
THE PROBLEM OF
IMAGE
CLASSIFICATION

Key Points Overview

D E E P
L E A R N I N G

2
 O

C
T

O
B

R
E

Supervised by
PROF. BELCAID
ANASS

Prepared By
BOUHNAS CHAYMAE

S
O
M
M
A
IR
E

Image Classification 1
2
3
4
5
6

CIFAR-10 Dataset

Distance Metrics

Nearest Neighbor Classifier

Code Examples

Inline Question Analysis

1 - I M A G E C L A S S I F I C A T I O N

Image classification is a fundamental computer vision
task where the goal is to assign a label from a set of
predefined categories to an image. This simple but
significant problem has widespread applications,
including medical diagnostics, autonomous driving,
and facial recognition. Additionally, tasks like object
detection and segmentation are often built on image
classification.

For example, a model processing an image of a cat will assign
probabilities to possible labels (like "cat" or "dog"). The image is stored as a
3D array of pixel values, where a 248 x 400 pixel image with 3 color
channels contains 297,600 values, each representing color intensity(from
0 (black) to 255 (white)). The model’s task is to interpret these numbers
and output the correct label, such as "cat."

Image classification presents several challenges that make it
difficult for computer vision models, despite being easy for humans.
Key challenges include:
Viewpoint variation: Objects can appear from different angles
relative to the camera.
Scale variation: Objects may vary in size, both in real-world
dimensions and in the image.
Deformation: Non-rigid objects can change shape significantly.
Occlusion: Objects may be partially hidden, with only small parts
visible.
Illumination conditions: Lighting can drastically change pixel
values.
Background clutter: Objects may blend into complex
environments, making them hard to distinguish.
Intra-class variation: Objects within the same category, like chairs,
can look vastly different, requiring the model to generalize well
across variations while distinguishing between classes.
 - In a data-driven approach to image classification, algorithms
learn to recognize categories, like cats, by analyzing many labeled
examples rather than explicit programming. This method relies on
building a training dataset, allowing models to discern patterns
through exposure, similar to teaching a child.

CHANLLENGES

1 - I M A G E C L A S S I F I C A T I O N

DEFINITION OF CIFAR-10

2 - C I F A R 1 0

CIFAR-10 is a widely used dataset in computer vision for image
classification. It consists of 60,000 color images, each
measuring 32x32 pixels, divided into 10 classes (such as
airplane, automobile, bird, and cat). The dataset is split into
50,000 training images and 10,000 testing images.

Training Data: The dataset used for training models, where each
data point (x) is a feature vector (an image) paired with a label (y)
that indicates its class (e.g., "cat" or "dog").
n: Represents the dimensionality of the input data (number of
pixels in an image).
k: The number of distinct classes in the dataset.
m: The total number of training data points.
Using the CIFAR dataset as an example, each image is 32x32
pixels (n=1024), with 50,000 training images (m) across 10 classes
(k). This framework is essential for understanding how image
classification models are developed and assessed.

EUCLIDEAN DISTANCE :

MANHATTAN DISTANCE

3 - D I S T A N C E S

Definition: This is the straight-line distance between two points
in a multi-dimensional space. It is calculated using the formula:

Where x and y are two points in n-dimensional space.
Usage: In image classification, Euclidean distance is often used
to measure similarity between image feature vectors. It works
well when the features are on a similar scale.

Definition: Also known as "taxicab" or "city block" distance, it
calculates the distance between two points by summing the
absolute differences of their coordinates:

Usage: This metric is beneficial when the feature space is grid-
like and works well in high-dimensional spaces. It can be more
robust to outliers compared to Euclidean distance.

EUCLIDEAN DISCHEBYSHEV
DISTANCE (INFINITY NORM) :

MAHALANOBIS DISTANCE :

3 - D I S T A N C E S

Definition: This distance metric calculates the maximum
absolute difference along any coordinate dimension:

Usage: Chebyshev distance is useful in scenarios where the
most significant difference in any dimension is of primary
interest, such as in some classification tasks where certain
features may dominate.

Definition: This distance takes into account the correlations of
the data set and is defined as:

Usage: Mahalanobis distance is particularly useful in image
classification when dealing with multi-dimensional data where
features are correlated. It can help to identify the distance
between a point and a distribution, rather than just between
points.

The Nearest Neighbor Classifier is a straightforward image
classification method that compares a test image to all training
images to find the closest match, assigning the label of that nearest
image. H However, its effectiveness can be limited; the classifier may
struggle with noise or complex backgrounds, which can lead to
incorrect predictions.
To compare images, one common approach is pixel-wise analysis
using the L1 distance, which sums the absolute differences between
corresponding pixels:

DEFINITION:

4 - N E A R E S T N E I G H B O R C L A S S I F I E R

Another option is the L2 distance, representing the Euclidean
distance between two vectors:

The L2 distance is more sensitive to larger discrepancies, preferring
multiple small differences over one significant one, while the L1 distance
offers a more forgiving metric.

4 - N E A R E S T N E I G H B O R C L A S S I F I E R

To improve prediction accuracy, the k-Nearest Neighbor (k-NN) Classifier
is often employed, where instead of just finding the nearest image, the
algorithm identifies the top k closest images and uses their labels to vote
on the test image's label. This approach helps mitigate the influence of
outliers, making the classifier more robust.
Overall, while the Nearest Neighbor Classifier provides a foundation for
understanding image classification, its limitations necessitate the
exploration of more advanced techniques.

The example shows the difference between Nearest Neighbor (NN) and 5-
Nearest Neighbor (5-NN) classifiers in classifying 2D points across three
classes (red, blue, green). The NN classifier may misclassify points due to
outliers, while the 5-NN classifier averages votes from multiple neighbors,
leading to smoother decision boundaries and improved generalization. Gray
areas indicate ties in votes, reflecting the balance between sensitivity to
outliers and classification accuracy.

BROADCASTING :

5 - C O D E E X A M P L E S

When we talk about broadcasting, we're referring to the way
NumPy handles arrays of different shapes in mathematical
operations. The rules for broadcasting are as follows:

Alignment: Broadcasting compares the dimensions of the
arrays starting from the rightmost dimension. If dimensions
are equal or one of them is 1, they are compatible.

Exemple :

Array A: Shape (4, 3)This means 4 rows and 3 columns.
Array B: Shape (3, 5)This means 3 rows and 5 columns.

Aligning from the right:
A has shape (4, 3), which we can think of as:

Dimension 0: 4 (rows)
Dimension 1: 3 (columns)

B has shape (3, 5), which can be viewed as:
Dimension 0: 3 (rows)
Dimension 1: 5 (columns)

HOW BROADCASTING WORKS :
When performing an operation between A and B, the
dimensions will align as follows:

The second dimension of A (3) matches the first dimension
of B (3):

A: (4, 3) aligns with B: (3, 5)
This means that for each of the 4 rows in A, the
corresponding 3 rows in B can be operated on together,
creating a larger resulting array.

FINAL RESULTING SHAPE :

After broadcasting:
A effectively becomes (4, 3, 5) (A is expanded along a
new dimension).
B effectively becomes (4, 3, 5) by repeating along the
first dimension (4 times).

The operation results in an array where each combination of
values from A and B can be processed together, producing a
new shape of (4, 5).

5 - C O D E E X A M P L E S

Example Arrays :

RESULT OF BROADCASTING :

When performing operations like addition or multiplication, the
two arrays will be broadcast together, leading to a resulting
shape of (4, 5). Each row of Array A combines with each row
of Array B:

Array A (Shape: (4, 3)):

Array B (Shape: (3, 5)):

EXPLANATION OF THE RESULT :
Row-wise Operation: Each element of Array A adds to the
corresponding elements of each row in Array B, leading to
a new array where:

The first row is derived from the first row of A and all
rows of B.
This continues for all rows in A, ensuring each row
combines with all rows in B.

5 - C O D E E X A M P L E S

EXAMPLE IN PYTHON (NUMPY):

The resulting shape of the broadcasted operation is (4, 3, 5).

Broadcasting to (4, 3, 5)

CODE :

The compute_distances_two_loops function calculates the
Euclidean distance between each test point in the provided
dataset X and all training points stored in self.X_train.

We would now like to classify the test data with the kNN
classifier

Step 1 :

first we must compute the distances between all test
examples and all train examples.
we have 3 methodes but in this note we are going to see 2 :

Using two loops :

5 - C O D E E X A M P L E S

The compute_distances_one_loop function efficiently
calculates the distances between a set of test points and
training points using a single loop.

 It initializes a distance matrix and uses nested loops to
iterate over each test and training example. For every pair, it
computes the difference between their feature vectors,
squares this difference, sums the squared values, and finally
takes the square root to determine the distance. The
resulting matrix dists holds the distances between every test
and training pair, allowing further processing for classification
tasks.

Using one loop :

Instead of iterating through both the test and training points
(as in the double loop method), this implementation focuses
on each test point while leveraging NumPy's broadcasting
capabilities. For each test point X[i], the function calculates
the squared differences from all training points in self.X_train.
By summing these squared differences along the appropriate
axis, it forms a single array that represents the distances to
all training points.

5 - C O D E E X A M P L E S

Finally, it applies the square root to convert the squared
distances to Euclidean distances, resulting in a distance
matrix where each row corresponds to a test point and each
column corresponds to a training point. This approach
enhances performance by reducing the time complexity
compared to the double loop method.

Step 2 :

The predict_labels function predicts labels for test samples
based on their distances to training samples. It takes a distance
matrix (dists) as input, where each entry represents the
distance between a test point and a training point. For each test
point, it identifies the indices of the k nearest training points
using np.argsort(dists[i])[:k]. Then, it retrieves the corresponding
labels from self.y_train and determines the most common label
among these neighbors. This label is stored in y_pred, which is
returned at the end. If there's a tie in label counts, the smallest
label is selected.

Given these distances, for each test example we find the k
nearest examples and have them vote for the label

Inline Question 1 :
Notice the structured patterns in the distance matrix, where some
rows or columns are visible brighter. (Note that with the default
color scheme black indicates low distances while white indicates
high distances.)
 - What in the data is the cause behind the distinctly bright rows?
 - What causes the columns?

QUESTION 1 :

6 - I N L I N E Q U E S T I O N A N A L Y S I S

Bright Rows :
The distinctly bright rows in the distance matrix typically indicate
that the corresponding test images are relatively distant from most
training images. When a row appears "mostly whitish," it suggests
that the pixel values of that test image differ significantly from the
pixel values of the training images, leading to higher distances. In
contrast, a "mostly blackish" row implies that the test image is
similar to many training images, meaning their pixel values are close
together.

Bright Columns :
For the columns, the brightness indicates the distance of training
images from test images. If a column is bright, it suggests that the
corresponding training image is far from the test images, implying it
has pixel values that are not closely aligned with those of the test
images. A dark column, on the other hand, would indicate that the
training image is similar to many test images.

Rows (Test Images): Bright rows signify high distances from training
images, indicating low similarity.
Columns (Training Images): Bright columns indicate that a training
image is distant from test images, again reflecting low similarity.

